Example 1:
Identify a refrigerating cycle for R134a refrigerant and following characteristic temperatures: 0°C / 40°C. How dose COP change when evaporating temperature decrease to -10°C?

Example 2:
How do refrigerating effect, compressor work and COP changes if evaporating temperature decrease from +5 to -10°C?. Refrigerating cycle is supplied by R 22, condensation temperature is +25°C and refrigerating capacity is $Q_{rc} = 5 kW$

Example 3:
Refrigerating cycle is supplied by R12 refrigerant. Plot a graph of variation COP with evaporating temperature changing. Take in to account evaporating temperature from range 0 to -25°C (each 5 K) and condensation temperature +30°C (for each cycles).

Example 4:
Identify a refrigerating cycle for R 600A refrigerant and following characteristic temperatures: 0 °C / 30°C. How dose COP change when condensation temperature increases by 20K?

Example 5:
Compare COPs of refrigerating cycles supplied by R 290 refrigerant for characteristic temperatures: -10 °C / 30°C and if:
- evaporating temperature decrease by 10 K
- condensation temperature increase by 10 K
- evaporating temperature increase by 10 K and condensation temperature decrease by 10 K

Example 6:
Refrigerating cycle is supplied by R717 refrigerant. Plot a graph of variation COP with condensation temperature. Take in to account condensation temperature from range 20 to 25°C (each 5 K) and evaporating temperature +30°C (for each cycles).