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1 Pipes in Series and in Parallel

In many pipe systems there is more than one pipe involved. Thegoverning mechanisms for the
flow in multiple pipe systems are the same as for the single pipe systems discussed in earlier lec-
tures (n5,n6). However, because of the numerous unknowns involved, additional complexities may
arise in solving for the flow in multiple pipe systems. Some ofthese complexities are discussed in
this section.
The simplest multiple pipe systems can be classified into series or parallel flows, as are shown
in Fig. 8.35. The nomenclature is similar to that used in electrical circuits. Indeed, an analogy
between fluid and electrical circuits is often made as follows. In a simple electrical circuit, there is
a balance between the voltagee, currenti, and resistanceR as given by Ohms law:e = iR. In a fluid
circuit there is a balance between the pressure drop∆p the flowrateqV , and the flow resistanceR
as given in terms of the friction factor and minor loss coefficients f andKL. For a simple flow
∆h = ∆p/ρg = f (l/D)(v2/2g it follows that∆h = R∗q2

V ,whereR∗ a measure of the resistance to
the flow, is proportional to f.

The main differences between the solution methods used to solve electrical circuit problems
and those for fluid circuit problems lie in the fact that Ohms law is a linear equation (doubling
the voltage doubles the current), while the fluid equations are generally nonlinear (doubling the
pressure drop does not double the flowrate unless the flow is laminar).
When the pipes are connectedin seris, the the flow rate through the entire system remains constant
regardless of the diameters of the individual pipes in the system. This is a natural consequence
of the conservation of mass principle for steady incompressible flow. The total head loss in the
system, including the sum of the head losses in individual pipe in the system, including the mirror
losses.
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n means resultant hydraulic resistance.
For a pipe that branches out into two (or more) parallel pipesand then rejoins at a junction down-
stream, the total flow rate is the sum of the flow rates in the individual pipes. The pressure drop
(or head loss) in each individual pipe connected in parallelmust be the same since∆p = pA − pB.
The governing equations for parallel pipes are

q = qv1 + qv2 + qv3 (2)

and
∆h1 = R∗
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3qv3 (3)

Using (3) the Eq. 2) can be rewrite
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The resultant hydraulic resistance for parallel connection is expressed as
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Figure 1: (a) Series systems – the flow rate through the entiresystem remains constant, the total
head loss in this case is equal to the sum of the head losses in individual pipes, (b) parallel pipe
system – head loss is the same in each pipe, and the total flow rate is the sum of the flow rates in
individual pipes.

As it is ease to check in parallel connection resultant hydraulic resistance is always smaller
then each individual resistance of the branch in the connection.
In computation of parallel –pipe systes,two types of problems occur:

1. with known elevation of the hydraulic grade line at A and B ((p/ρg + z) is given), the
dischargeqv needs to be determined
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2. with qv the distribution of the flow and the head loss need to be determined. Size of pipe,
fluid properties, and roughnesses are assumed to be known

The first type problem is, in effect, the solution of simple pipe problems for discharge, since the
head loss is the drop in hydraulic grade line. These discharges are added to determine the total
discharge.// The second type problem is more complex, as neither the head loss nor the discharge
for any one pipe is know. One can use the following procedure:

1. assume a dischargeq′v1
through pipe 1

2. solve for∆h′1, using the assumed discharge

3. using∆h′1, find q′v2
andq′v3

4. with the tree discharges for a common head loss, now assumethat the givenqv is split up
among the pipes in the same proportion asq′v1

,q′v2
, q′v3

. Thus,

qv1 =
q′v1

∑q′vi

qv, qv2 =
q′v2

∑q′vi

qv,qv3 =
q′v3

∑q′vi

qv

5. check the correctness of the these discharges by computing ∆h1, ∆h2, and∆h3 for the com-
putedqv1, qv2 andqv3

2 Three–reservoir problem

The branching system termed thethree–reservoir problemin shown in the Fig. 2. Three reser-
voirs at known elevations are connected together with threepipes of known properties (lengths,
diameters, and roughnesses). The problem is to determine the flowrates into or out of the reser-
voirs. If valve (1) were closed, the fluid would flow from reservoir B to C, and the flowrate could
be easily calculated. Similar calculations could be carried out if valves (2) or (3) were closed with
the others open. With all valves open, however, it is not necessarily obvious which direction the
fluid flows. For the conditions indicated in Fig. 2, it is clearthat fluid flows from reservoir A
because the other two reservoir levels are lower. Whether the fluid flows into or out of reservoir B
depends on the elevation of reservoirs B and C and the properties (length, diameter, roughness) of
the three pipes. In general, the flow direction is not obvious, and the solution process must include
the determination of this direction.

During this course I will be used the following books:

References

[1] F. M. White, 1999.Fluid Mechanics, McGraw-Hill.

[2] B. R. Munson, D.F Young and T. H. Okiisshi, 1998.Fundamentals of Fluid Mechanics, John
Wiley and Sons, Inc. .

3



Figure 2: A three-reservoir system
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